
Application of 'logical transport' to determine the directed and isotropic percolation thresholds

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1987 J. Phys. A: Math. Gen. 20 L873

(http://iopscience.iop.org/0305-4470/20/13/011)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 14:11

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/20/13
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J .  Phys. A: Math. Gen. U) (1987) L873-Ls78. Printed in the UK 

LETTER TO THE EDITOR 

Application of ‘logical transport’ to determine the directed and 
isotropic percolation thresholds 

Alex Hansent and Stkphane RouxS 
t Groupe de Physique des Solides de 1’Ecole Normale SupCrieure, 24 rue Lhomond, F-75231 
Paris Cedex 05, France 
$ Laboratoire d’Hydrodynamique et MCcanique Physique de 1’Ecole Superieure de 
Physique et Chimie Industrielles, 10 rue Vauquelin, F-75231 Paris Cedex 05, France 

Received 10 April 1987, in final form 19 June 1987 

Abstract. We present a Monte Carlo algorithm based on ‘logical transport’ which determines 
the effective isotropic percolation and directed percolation thresholds of finite-size lattices. 
We apply the algorithm to bond and site directed percolation in two dimensions and 
determine the asymptotic percolation thresholds by finite-size scaling. 

There already exist several numerical and analytical methods for determining the 
percolation threshold, p c ,  on various lattices [ 11. In this letter we present yet another 
Monte Carlo method, which is rather different in spirit from previous methods, even 
though related to the invasion percolation method of Wilkinson and Barsony [2] and 
which is numerically very efficient for direct percolation [3]. The method consists of 
an algorithm that determines the effective percolation threshold for each lattice in a 
given ensemble of lattices of a given size. By finite-size scaling [l] p c  is then found. 
We use this method to estimate pc in directed site percolation on a square lattice to be 

(1) 
which is consistent with the previous series expansion estimate of De’Bell and Essam 
[4], p c  = 0.7055( 1). For directed bond percolation we obtain 

p c  = 0.7056 f 0.0002 

p c  = 0.6448 f 0.0002 (2) 
which is consistent with the series expansion estimate of Essam et al [5], p c =  
0.644 701(2). 

The idea underlying the Monte Carlo method we present here is that of ‘Boolean 
transport’. All the static properties of percolation clusters in the thermodynamic limit 
are properties of the ‘connectedness’ of the clusters. This connectedness is best 
described by logical variables, i.e. variables that are either ‘true’ or ‘false’ as will be 
described in the following paragraphs where we adopt a ‘logical Green function’ 
approach. In this context, the static properties may be viewed as transport properties 
of logical variables, just as the dynamical properties may be viewed as transport of 
scalar (e.g. conductivity) or vector (e.g. elasticity) variables, and the ‘logical Green 
functions’ exhibit all the properties of ‘ordinary’ Green functions. The application of 
logical variables to study the geometrical properties of ordinary connectivity percolation 
is very natural and efficient. It may turn out that this formalism also is able to provide 
an algorithm for determining the geometric properties of such complicated systems as 

0305-4470/87/ 130873 + 06%02.50 @ 1987 IOP Publishing Ltd L873 



L874 Letter to the Editor 

the elastic central-force network near the rigidity threshold [6]. Not all readers will 
wish to go through the rather formal development of the method that follows. These 
readers may skip directly to equation (8). 

Suppose we have a lattice where the sites are occupied with probability p and 
empty with probability 1-p. We define a path of length 1 in this lattice to be a 
connection between two occupied nearest-neighbour sites. This is now the standard 
site percolation problem. We introduce two Boolean matrices A, and D, where i and 
j refer to sites i and j on the given lattice. The diagonal element Dii is 1 (i.e. ‘true’) 
if site i is occupied, and 0 (‘false’) if it is empty, and all off-diagonal elements Dij are 
zero. The off-diagonal element A, is 1 if i and j both are occupied and if they are 
nearest neighbours, otherwise A, = 0. All diagonal elements Aii are zero. A non-zero 
(‘true’) element of A, corresponds to a connected path of length 1 on the lattice. The 
two matrices A, and 0, completely specify the cluster structure of the original lattice 
without containing any redundant information apart from the symmetry of the matrix 
that results from the symmetry of the connections. In the ‘diode’ network of Redner 
[7], if an occupied site i is connected to another occupied site j by a path of length 
1, j will not necessarily be connected to i. In this case, A, will not be symmetric. 

A connected path of length 2 between sites i and j through their common nearest- 
neighbour site k exists if and only if (Aik and Akj) = 1, where ‘and’ is the logical ‘and’ 
operation. Now, suppose i and j have two common nearest-neighbour sites k and I. 
Then there is a connected path between i and j of length 2 if (Aik and Akj) or (Ail 
and A,,.) = 1, where ‘or’ is the logical ‘or’ operation. We explain this expression in 
words. There is a path of length 2 between i and j if there are paths of length 1 
between i and k and k and j ,  or there are paths of length 1 between i and 1 and 1 and 
j .  With this in mind, we define the multiplication and addition rules for the Boolean 
matrices as follows: suppose we have two Boolean matrices B and C. Then define 
the matrix product as ( B O C ) , = ( B i l  and C l j )  or ( B i 2  and C2,) or . . . or (BIN and 
CNj) ,  where N is the size of the matrices. Furthermore, in light of this definition, it 
is natural to define the matrix addition as ( B O C ) ,  = Bij or C, (where there is no 
summation over repeated indices). Now, with these definitions, all off -diagonal and 
non-zero elements of the matrix A* = A O A  represent paths of length 2 on the original 
lattice, and the matrix D O A O A ’  represents all connected paths of length 0, 1 or 2. 
In general D O A O A 2 @ A 3 0 . .  .@A” contains all connected paths of lengths from 0 
to n. Thus, a Boolean connectedness (or ‘logical’) Green function can now be defined 
as 

p3 

G = D O  
k = l  

(3) 

where G, is 1 if sites i and j belong to the same cluster, and zero otherwise. It may 
be amusing to note that the Green function in (3) obeys a Dyson equation of the form 
G = DO GOA.  This follows trivially from (3). The symbol X means as usual the 
repeated use of the 0 operation defined above. Suppose our finite lattice is part of 
an infinite lattice. Let Greek indices indicate the sites on the edge of the finite lattice, 
and let Latin indices indicate, as before, any site on the finite lattice. Suppose 
furthermore that we know which sites on the edges of the finite lattice belong to the 
infinite cluster. This information is contained in the Boolean function P, which is 1 
if a, which is a border site, belongs to the infinite cluster, and 0 otherwise. Then 

Pi = OR, Gi,P, (4) 



Letter to the Editor L875 

will be either 1 if i belongs to the infinite cluster, or 0 otherwise. The symbol OR, 
means that the logical ‘or’ operation is done between all sites a. We now give a 
different, and for our purpose more convenient, representation of the Green function, 
which is analogous to the path integral representation of ‘standard’ Green functions. 
Suppose T (  i, j )  is a given path between sites i and j .  Then, G may be written 

(the information contained in matrix A is now hidden in the definition of paths T (  i ,  j ) )  
where the logical ‘or’ operation is taken between all possible paths between i and j ,  
and the logical ‘and’ operation is taken between all sites along each given path .n. 

To generate the finite lattice and the matrix A, we associate in the usual way a 
random number ri to each site i [l]. Thus, if ri < p ,  site i is occupied, otherwise it is 
empty. The matrix D is then given by 

Dii = ( r i  < p )  

and 

A i j = ( r i < p )  and ( r j < p )  (6’) 

Gij OR,a(i , j ) ) (ANDk,n(i , j ) (rk <P))* ( 7 )  

if i and j are nearest neighbours, zero otherwise. Combining ( 5 )  and ( 6 ) ,  we get 

We notice that it is the largest rk along a given path r(i, j )  that determines whether 
this path is connected or not; if this rk is less than p ,  all the others will also be less 
than p,  and the path is connected. Furthermore, it is the smallest of the largest rk from 
each path that determines whether i and j are connected or not; if the smallest of the 
largest rk is less than p ,  then there is a connected path between i and j .  This leads to 
the following equation for determining the effective percolation threshold between 
sites i and j .  In (7) let us turn ‘and’ and ‘or’ operations into “ax’ and “in’, to get 

Peff ( i, j )  = { X (  i , j  )} ( MAX k E a( i , j  ) rk ). (8)  
This equation forms the basis for our algorithm for calculating the percolation threshold 
p c .  The meaning of peff( i, j )  in terms of the connectedness Green function defined in 
(3) is that if p < p e f f ( i ,  j ) ,  G, =0,  and if p > p e f f ( i ,  j ) ,  G, = 1, i.e. there is a connection 
between i and j along occupied bonds only if p > p c .  A more physical way of visualising 
the contents of this equation is to think of each assigned random number as the height 
of an obstacle at each node. Then the barrier of a given path connecting i and j is 
defined as the height of the highest obstacle along this path, and thus the effective 
threshold peff(i, j )  may be interpreted as the height of the smallest barrier along any 
path between nodes i and j .  Now, if the distance between i and j goes to infinity, 
peff( i ,  j )  will approach p c .  

In order to compute the effective percolation threshld for a given finite-size lattice, 
one can implement (8) through a transfer-matrix algorithm [8] to be explained below 
for the directed percolation case. In the present isotropic case, this method will require 
N 2  operations (and in the directed case, N operations) where N is the number of 
nodes in the lattice. This is as fast as one can do in order to exactly determine the 
effective threshold for a given lattice. However, to average the effective threshold over 
several lattices and then extrapolate to infinite-size lattices in order to determine p c  is 
probably too expensive in terns of computer time when compared with other numerical 
methods [ 11; there is more information in the effective threshold of a given lattice than 



L876 Letter to the Editor 

we need for determining p c .  In directed percolation, however, the determination of 
pen(L) for a given lattice is very fast, and p c  may be determined from an average over 
effective thresholds. 

In a square lattice let us introduce a preferred direction (e.g. a ‘time’ axis) along 
one of the diagonals. Now, the directed percolation problem differs from the usual, 
isotropic one we have discussed so far by defining occupied nearest-neighbour sites 
to be connected by a path of length 1 only in the preferred direction of increasing 
‘time’. In terms of the matrix A, this can be expressed in the following way. If j has 
a smaller ‘time’ coordinate than i, then Aji = 0 no matter what A, is. This leads to (4) 
being no longer a boundary-value problem as in the isotropic case, but an initial ualue 
problem. Let us at this point change the notation for the lattice sites: a site is defined 
by a ‘time’ and a coordinate i along one of the axes. Thus, (4) now becomes 

(9) Pi( T )  = ORjG,( T, t)e(t) 
where T >  t are the ‘time’ coordinates. Using (7) and (9), we may write 

P i ( t + l ) = { P i ( t )  and ( r , ( t + l ) < p ) }  or { P i + l ( t )  and ( r , ( t + l ) < p ) }  

= { P i ( t )  or P i + l ( t ) }  and ( r i ( t + l ) < p ) .  (10) 

If we in this equation substitute ‘and’ by “ax’ and ‘or’ by “in’ as done in (8), we get 

pen( i, t + 1) = min (max ( p e n (  i, t) ,  ri(  t + l ) ) ,  max (pen(  i + 1 ,  t ) ,  r i (  t + 1 ) ) )  

= max (min ( p e a ( i ,  t) ,  p e f f ( i +  1, t ) ) ,  r i ( t +  1)). ( 1 1 )  
We interpret the contents of this equation in terms of the notion’ of barriers introduced 
after (8). pen( i, t )  may be interpreted as the minimum barrier along any path connecting 
the lower boundary to the node ( i ,  1 )  forwards in time. Then ( 1  1) states that the barrier 
to overcome to reach node (i, t + 1) is equal to the maximum height of the obstacle at 
node ( i ,  t + 1) and the smallest of the barriers to overcome to get to either node ( i ,  t )  
or node ( i  + 1, t )  from the lower boundary. By the same arguments as those given 
after (8), we find that peff ( i ,  t )  approaches p c  as t+cO (if the lattice is wide enough). 
This equation is easily and efficiently implemented on a computer. 

In our computer runs in order to determine the percolation threshold for directed 
site percolation on square lattices we used a (square) lattice of size L x L oriented so 
that the preferred direction was along the diagonals. The boundary conditions were 
periodic in the direction orthogonal to the ‘time’ axis and non-periodic in the direction 
parallel to it. Equation ( 1 1 )  was integrated from the lower ( t  = 1) to the upper ( t  = L) 
edge of the lattice. As initial conditions we set pen( i, t = 1) = 0. The effective directed 
percolation threshold for the given lattice is then given by min ( pen( i, t = L)). 

Next, this effective threshold is averaged over many lattices, and we obtain a pef f (L) .  
In the corresponding directed bond problem, (1 1) is changed into 

( 1 2 )  p e f f ( i ,  t +  1) = min (max ( p e n ( (  t ) ,  u i ( t +  l ) ) ,  max ( p e n ( i +  1, t), u i ( t  + 1 ) ) )  
where ui(  t + 1) is a random number between 0 and 1 associated with the link between 
sites ( i ,  t )  and ( i ,  t + 1 )  and vi( t + 1) is another random number associated with the 
link between sites ( i +  1, t )  and ( i ,  t + l ) .  The determination of p e n ( L )  from this is 
identical to that of the site problem. However, in terms of computer time, the site 
problem is almost twice as fast as the bond problem since most of the CPU time is 
spent generating random numbers (i.e. 70% of the CPU time when using the built-in 
random number generator of an FPS-164 for the site problem), and the bond problem 
needs twice as many random numbers per lattice as the site problem. 



Letter to the Editor L877 

The lattices we generated and included in our analysis ranged in size from L = 10 
to 1000 on three different computers: an FPS-164 (with a speed of 12 ps per site in 
the site problem), a Cyber 76 (with a speed of 18 ps per site) and an IBM 3090. The 
averaged p e f f ( L )  and the corresponding standard deviations for the site problem are 
listed in table 1. To analyse the data, we made the finite-size scaling assumption 

peff( L )  = p c  - uL-'/"II + bL-'/"L (13) 
where vll is the correlation length exponent in the direction parallel to the 'time' axis, 
and vL is the orthogonal correlation length exponent. Essam et a1 [ 5 ]  have calculated 
these two exponents by series expansion methods to be vll = 1.7334(5) and v, = 
1.0972(4). (We have assumed that these exponents are equal for the site and bond 
problem.) Given these exponents we fitted (13) to the data of table 1 by a least-squares 
method where we choose a prefactor b and then determine which prefactor a and 
constant term pc minimise xZ. Then we choose b which gives the smallest minimum 
x2. Exponents other than l/  vl such as 2/ vII , and 1 were tried for the second correction- 
to-scaling term, but l / v ,  gave clearly the best result. For the site problem we found 
the value p c  = 0.7056(2), quoted in (1); for the bond problem we found p c  = 0.6448(2) 
as quoted in (2). These best-fit curves are shown in figure 1.  

Table 1. peW(L)  and its standard deviation for site directed percolation in two dimensions 
for some of the sizes generated. The number of lattices generated for each L is indicated. 

A similar 

Effective Standard 
L Realisations thresholds deviation 

10 1000 0.5041 0.0973 
20 1000 0.5559 0.0599 
30 1000 0.5830 0.0463 
40 1000 0.5986 0.0397 
50 1000 0.6097 0.0323 
60 1000 0.6160 0.0289 
70 1000 0.6230 0.0267 
80 1000 0.6270 0.0237 
90 1000 0.63 17 0.021 1 

100 1000 0.6364 0.0209 
200 1000 0.6568 0.0120 
300 1000 0.6651 0.0098 
400 1000 0.6719 0.0082 
500 1000 0.6784 0.0064 
600 1000 0.6775 0.0048 
700 1000 0.68 18 0.0037 
800 500 0.6829 0.0060 
900 500 0.6808 0.0047 

1000 500 0.6843 0.0054 

use of the 'Boolean transport' introduced in the first part of this letter 
also proves to be an efficient way to compute geometric critical exponents such as p 
for directed percolation [9]. 

We would like to thank E Guyon, D Stauffer and J Vannimenus for many useful 
discussions on this subject. We would also like to thank T J$ssang and M Novotny 
for their assistance in obtaining computer time at Bergen Scientific Center and D 



L878 Letter to the Editor 

- 

0.50 - 

t 
0 0.04 0.08 0.12 0.16 0.20 0.24 

L-112 

Figure 1. p,,(L) as a function of L for the site (+) and bond (0) directed percolation 
problem. The full curves are the best fits for the two data sets. 

Stauff er for his hospitality at the University of Cologne where further computations 
were done. Most of the computations were done at the Ecole Normale SupCrieure on 
an FPS-164 computer supported by GRECO 70 (ExpCrtimentation NumCrique). AH 
acknowledges support from CEN-Saclay through a Joliot-Curie Fellowship, and SR 
is supported by the Ecole Nationale de Ponts et ChaussCes. 

References 

[ l ]  D Stauffer 1985 Introduction to Percolation Theory (London: Taylor and Francis) 
[2] Wilkinson D and Barsony M 1984 J. Phys. A: Math. Gen. 17 L129 
[3] Kinzel W 1982 Percolation Structures and Processes ed G Deutcher, R Zallen and J Adler (Bristol: Adam 

[4] De’Bell K and Essam J W 1983 J. Phys. A: Math. Gen. 16 385 
[5] Essam J W, De’Bell K, Adler J and Bhatti F M 1986 Phys. Rev. B 33 1982 
[6] Day A R, Tremblay R R and Tremblay A-M S 1986 Phys. Rev. Lett. 56 2501 
[7] Redner S 1982 Phys. Rev. B 25 3242 
[8 ]  Vannimenus J and Nadal J-P 1984 Phys. Rep. 103 47 
[9] Roux S 1987 Eur. J. Phys. 8 186 

Hilger) 


